请联系:lidf3@mail.sysu.edu.cn

招生专业

海洋地质与地球化学

个人详细介绍

一、简历                                                                            

2011年9月至2016年6月     中国科贝博ballbet入口大学广州地球化学研究所(GIG)

博士学位:矿床学、矿物学、岩石学

2014年9月11日至2015年9月7日    湖首大学(Thunder Bay, Canada)                              

联合培养博士:矿床学、矿物学、岩石学

2006年9月至2011年6月   中国地质大学(北京)(CUGB)                                      

学士学位:资源勘查工程(固体矿产)

 

二、教学

主讲本科生《海洋地球化学》、研究生《现代测试技术与数据处理》、《高等同位素地球化学》年代学部分、《海洋资源与环境》资源部分

 

三、主持及参加科研项目

  1. 国家自然科学基金优秀青年科学基金项目:海洋矿产资源稀土成矿年代学研究,2025-2028,200万,主持
  2. 中央高校基本科研业务费-青年教师重点培育项目:深海沉积物中稀土元素富集机理与成矿过程,2023-2024年,40万,主持
  3. 国家自然科学基金面上项目:深海富稀土沉积物成矿年代学与富集机制研究——以西太平洋为例,2023-2026年,55万,主持
  4. 国家重点研发计划重点专项,钦杭成矿带湘南段铜多金属矿产深部探测技术示范:蚀变矿物地球化学勘探,2018-2022年,55万,子课题主持
  5. 国家自然科学基金青年项目:新疆彩霞山铅锌矿硫化物原位硫同位素特征及对成矿机制的指示;27万;主持
  6. 广东省自然科学基金-自由申请: 粤北凡口多阶段硫化物Re-Os成矿年代学研究及与新疆彩霞山铅锌矿矿床成因的对比; 10万;主持
  7. 高校基本科研业务费中山大学青年教师培育项目(2017-2020):粤北凡口铅锌矿多阶段硫化物成矿年代学研究及其对矿床成因的指示,15万;主持
  8. 大洋协会项目,大洋十三五“富钴结壳合同区资源勘探与评价”项目下属课题,合同区海山形成演化及铁锰矿床成矿模型研究,2017.09-2020.12,项目骨干
  9. 国家自然科学基金-重大研发计划-重点支持项目、特提斯构造域碰撞造山型金矿成矿机制,91855213 ,311万,项目骨干
  10. 广东省促进经济发展专项资金(海洋经济发展用途)项目,天然气水合物先导区甲烷渗漏的地球化学示踪, 2018.05-2022.05, 项目骨干
  11. 中国地质调查局项目:环塔里木前寒武纪成矿作用及大型找矿靶区优选研究(2011 年 9 月至 2016 年 6 月;1212011140056),235万,参与
  12. 国家 973 项目:新疆北部古弧盆体系成矿机理(2014 年 1 月至 2018 年 8 月;2014CB440800),1490万,参加

 

四、论文发表

 

  • 2024
  1. Peng, J., Li, D.*, Poulton, S.W., O’Sullivan, G.J., Chew, D., Fu, Y., and Sun, X., 2024, Episodic intensification of marine phosphorus burial over the last 80 million years: Nature Communications, v. 15, p. 7446, doi:10.1038/s41467-024-51598-x.
  2. Tang, Y., Li, D.*., et al,. 2024, The adsorption of cerium on synthetic δ-MnO2: Implications for Ce uptake behavior of hydrogenetic and early diagenetic ferromanganese nodules from the Western Pacific: Marine Geology, doi:10.1016/j.margeo.2024.107309.
  • 2023
  1. Li, D., Peng, J., Chew, D., Liang, Y., Hollings, P., Fu, Y., Dong, Y., and Sun, X., 2023, Dating rare earth element enrichment in deep-sea sediments using U-Pb geochronology of bioapatite: Geology, v. 51, p. 428–433, doi:10.1130/G50938.1.
  2. Li, Z., Sun, X., Li, D., Liang, Y., Li, S., and Peng, J., 2023, Platinum enrichment in marine ferromanganese oxides: Constraints from surface adsorption behavior on synthetic feroxyhyte (δ-FeOOH): Chemical Geology, v. 615, p. 121204, doi:10.1016/j.chemgeo.2022.121204.
  • 2022
  1. Li, D. et al., 2022, PL57 garnet as a new natural reference material for in situ U–Pb isotope analysis and its perspective for geological applications: Contributions to Mineralogy and Petrology, v. 177, p. 19, doi:10.1007/s00410-021-01884-4.
  2. Zhang, Y. Li, D.*.et al., 2022, In-situ U-Pb geochronology of vesuvianite in skarn deposits: Chemical Geology, v. 612, p. 121136, doi:10.1016/j.chemgeo.2022.121136.

 

  • 2020
  1. Li, D., Fu, Y., Liu, Q., Reinfelder, J.R., Hollings, P., Sun, X., Tan, C., Dong, Y., and Ma, W., 2020a, High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility: Gondwana Research, v. 81, p. 461–474, doi:10.1016/j.gr.2019.12.009.
  2. Li, D., Fu, Y., Sun, X., and Wei, Z., 2020b, Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility: Ore Geology Reviews, v. 118, p. 103371, doi:10.1016/j.oregeorev.2020.103371.
  3. Li, D., Hollings, P., Chen, H., Sun, X., Tan, C., and Zurevinski, S., 2020c, Zircon U–Pb and Lu–Hf systematics of the major terranes of the Western Superior Craton, Canada: Mantle-crust interaction and mechanism(s) of craton formation: Gondwana Research, v. 78, p. 261–277, doi:10.1016/j.gr.2019.09.006.
  • 2019
  1. Li, D., Chen, H., Sun, X., Fu, Y., Liu, Q., Xia, X., and Yang, Q., 2019a, Coupled trace element and SIMS sulfur isotope geochemistry of sedimentary pyrite: Implications on pyrite growth of Caixiashan Pb–Zn deposit: Geoscience Frontiers, v. 10, p. 2177–2188, doi:10.1016/j.gsf.2019.05.001.
  2. Li, D., Tan, C., Miao, F., Liu, Q., Zhang, Y., and Sun, X., 2019b, Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet: Ore Geology Reviews, v. 107, p. 587–599, doi:10.1016/j.oregeorev.2019.03.011.
  • 2018
  1. Li, D., Chen, H., Hollings, P., Zhang, L., Sun, X., Lu, W., Wang, C., and Fang, J., 2018a, Isotopic footprints of the giant Precambrian Caixiashan Zn-Pb mineralization system: Precambrian Research, v. 305, p. 79–90, doi:10.1016/j.precamres.2017.11.014.
  2. Li, D., Fu, Y., and Sun, X., 2018b, Onset and duration of Zn-Pb mineralization in the Talate Pb-Zn (-Fe) skarn deposit, NW China: Constraints from spessartine U-Pb dating: Gondwana Research, v. 63, p. 117–128, doi:10.1016/j.gr.2018.05.013.
  3. Li, D., Fu, Y., Sun, X., Hollings, P., Liao, J., Liu, Q., Feng, Y., Liu, Y., and Lai, C., 2018c, LA-ICP-MS trace element mapping: Element mobility of hydrothermal magnetite from the giant Beiya Fe-Au skarn deposit, SW China: Ore Geology Reviews, v. 92, p. 463–474, doi:10.1016/j.oregeorev.2017.11.027.
  • 2017
  1. Li, D., Chen, H., Zhang, L., Fralick, P., Hollings, P., Mi, M., Lu, W., Han, J., Wang, C., and Fang, J., 2017, Geochemistry of fine-grained clastic rocks in the Mesoproterozoic Kawabulake Group: implications for provenance and the tectonic model of the Eastern Tianshan, Xinjiang, NW China: International Journal of Earth Sciences, v. 106, p. 115–129, doi:10.1007/s00531-016-1304-5.
  • 2016
  1. Li D. et al., 2016a, Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn–Pb deposit in the Eastern Tianshan, NW China: Ore Geology Reviews, v. 72, p. 355–372, doi:10.1016/j.oregeorev.2015.08.007.
  2. Li, D., Chen, H., Hollings, P., Zhang, L., Mi, M., Li, J., Fang, J., Wang, C., and Lu, W., 2016b, Re-Os pyrite geochronology of Zn-Pb mineralization in the giant Caixiashan deposit, NW China: Mineralium Deposita, v. 51, p. 309–317, doi:10.1007/s00126-016-0637-0.
  3. Li, D., Chen, H.Y., Hollings, P., Zhang, L., Sun, X., Zheng, Y., Xia, X., Xiao, B., Wang, C., and Fang, J., 2016c, Trace element geochemistry of magnetite: Implications for ore genesis of the Talate skarn Pb-Zn (-Fe) deposit, Altay, NW China: Ore Geology Reviews, doi:10.1016/j.oregeorev.2017.03.015.
  4. Li, D, Zhang, L., Chen, H., Hollings, P., Cao, M., Fang, J., Wang, C., and Lu, W., 2016d, Geochronology and geochemistry of the high Mg dioritic dikes in Eastern Tianshan, NW China: Geochemical features, petrogenesis and tectonic implications: Journal of Asian Earth Sciences, v. 115, p. 442–454, doi:10.1016/j.jseaes.2015.10.018.
  • 2014及以前
  1. Li, D., Zhang, L., Chen, H.-Y., Zheng, Y., Hollings, P., Wang, C., and Fang, J., 2014, Ore genesis of the unusual Talate Pb-Zn(-Fe) skarn-type deposit, Altay, NW China: constraints from geology, geochemistry and geochronology: TALATE Pb-Zn(-Fe) SKARN-TYPE DEPOSIT, ALTAY, XINJIANG: Geological Journal, v. 49, p. 599–616, doi:10.1002/gj.2570.
  2. 李登峰, 张莉, and 郑义, 2013, 新疆阿尔泰塔拉特铁铅锌矿床流体包裹体研究及矿床成因: 岩石学报, v. 29, p. 178–190.